

STORAGE RESEARCH INFRASTRUCTURE ECO-SYSTEM

RI Information sheet 2022

CNR ITAE, Messina, Italy

STORECHEM-Net (Network of Chemical Energy Storage research facilities and equipment)

Contact person 1:

Antonio Vita , email: antonio.vita@itae.cnr.it

Project Acronym	StoRIES
Call	H2020-LC-GD-2020
Grant Agreement No.	101036910
Project Start Date	01-11-2021
Project End Date	31-10-2025
Duration	48 months
I contraction of the second	

1. Photo

Ö

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 101036910

2. Geographical coordinates :

(38°,9',003" N/S, 15°,31',33.337" E/W)

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 101036910

3. Description of the research infrastructure for the webpage

Bench-scale test rings with an integrated cooling system: Dedicated to the conversion of CO_2 to methane and ammonia synthesis for the identification of the catalytic properties of structured and pellets catalysts. The plant is equipped with fixed-bed reactors (single or multi-tubular) for tests at high (500-600°C) and low (250-400°C) temperature. The test facility is provided with: mass flow controllers, pumps, valves, pressure regulators, IR analyse and thermocouples for axial and radial temperature profiles controlled from a PC via suitable software. Mass Flow range: $1-10 \text{ Nm}^3/\text{h}$.

• Lab-scale test rigs: Dedicated to CO₂ conversion processes and ammonia synthesis for the identification of the catalytic properties of the powder and structured catalysts. Fixed-bed reactor (Øint=0.6-2cm) that can operate at a temperature of up to 900°C, max pressure 4 bar, max feed rate \approx 1000 cm³/min.. The plants are equipped with HPLC micro-pumps for liquid dosing and GC and/or online mass spectrometers.

• Chemical physical and morphological characterizations of materials state of the art equipment for catalysts and electrocatalysts characterization. The equipment list includes but not limited to: XRD, SEM, TEM, IR, UV-VIS spectrophotometry, BET, CHNSO.

• Fully equipped laboratory for the preparation of catalysts powders and catalyst-coated ceramic and metallic monolith, foams or 3D printed structures, including equipment for rheological studies.

4. Availability of the research infrastructure:

The infrastructure <u>will not be available</u> for StoRIES from march 2022 to march 2023.

5. Special considerations (confidentiality / NDA agreements, insurance requirement, special training, HSE training) To be defined

6. Energy storage technology that can be analysed/studied by using the research infrastructure

- Electrochemical \Box
- Chemical **x**

- Thermal 🗌
- Mechanical 🗌
- Superconducting Magnetic \Box
- Cross-cutting

 (Specifically: ...)

7. Key words for the webpage

Chemical Energy Storage, Electrochemical Energy Storage, CO₂ conversion to energy carriers, Materials characterization, Reactors and Devises tests stations, Ammonia, Synthetic Natural Gas, DME, Methanol

- 8. TRL level (if applicable):
 - 1-3 X
 - 4-6 **x**
 - Above 🗆